

MAXWELL PG TECHNICAL DATA

PHYSICAL AND CHEMICAL CHARACTERISTICS

Maxwell ™ PG (Propylene Glycol) is an aluminum oxide based nanofluid that dramatically increases thermal conductivity and convective heat transfer, and is engineered for use in closed-loop hydronic systems where no phase change occurs.

Maxwell [™] PG delivers:

- Efficient, reliable and consistent performance over a wide temperature range.
- Increased cooling and/or heating capacity when compared to systems using water and PG only. Maxwell [™] removes the "glycol penalty".
- Lower first cost. equipment and MER sizing, and electrical power requirements.
- · Savings in energy, operating and maintenance costs, and capital expenditures.

The fluid life in any system is dependent on the system design, operation and maintenance, and can vary by heat transfer fluid chemistry. Therefore, it is important to properly maintain fluid chemistry regarding pH, corrosion inhibitors and biocides. Fluid contamination will accelerate decomposition and may result in increased solids concentrations. Excess solids can and should be filtered and removed.

Maxwell™ will not reduce existing fluid life expectancy. It is important to note that Maxwell ™ will not restore or reduce the effects of corrosion that may be present in systems that have not been properly maintained.

Maxwell[™] has been tested using strict ASTM guidelines for metals and synthetic materials commonly used in the construction of heat transfer systems.

Maxwell[™] has little effect on viscosity, therefore, no appreciable effect on system fluid pumping energy.

COMPOSITION(% BY WEIGHT)		
Propylene Glycol	37	
Performance Additives	9	
Water	54	

TYPICAL PROPERTIES*

Propylene Glycol		37					
Performance Ad	ditive	es	9				
Water				54			
Colour			,	White			
Odour			Odo	urless			
рН				10			
Density@ 20°c (6	8°F)	kg/m³	$\text{(lb/ft}^3)$	1,078	(6 7)		
Operating Range	OC	(OF)	-22	2to 180	(-8 to324)		
Freeze Point	OC	(OF)		-22	(-8)		
Burst Point	OC	(°F)		- 51	(-60)		
Boiling Point	OC	(OF)		105	(221)		
Flash Point	OC	(OF)		104	(219)		

^{*}Typical properties for Maxwell "PG (40%), not to be construed as specifications. Complete product specifications are available on request.

CORROSION TEST RESULTS*									
Metal	D.I. Water	Maxwell [™] PG							
Solder	3.10	0.01							
Aluminum	13.2	0.01							
Copper	0.08	0.01							
Brass	0.22	0.01							
Greycast Iron	21.1	0.02							
Carbon Steel	9.69	0.01							

^{*}Based on corrosion tests ASTM D7384, in mils per year (mpy).

Synthetic	D.L Water	Maxwell [™] PG
EPDM	0.0000061	0.0000057
VMQ	0.0000037	0.0000033
FKM	0.0000020	0.0000019
AEM	0.0000312	0.0000241
CR	0.0000125	0.0000104
HNBR	0.0000015	0.0000015

^{*}Based on corrosion tests ASTM D477, in mils per year (mpy).

MAXWELL™ WITH 40% PG CONCENTRATION IN WATER							ONCENTRAT	ION IN WAT	ER ONLY				
TEMPE	TEMPERATURE		THERM. TEMPERATURE COND.		EMPERATI IRE		RATURE DENSITY VISCOSI		VISCOSITY	THERM. COND.	SPECIFIC HEAT	DENSITY	VISCOSITY
ОС	OF	W/mK	kj/kg K	kg/m³	mPa-s	W/mK	kj/kg K	kg/m³	mPa-s				
10	50	0.461	3.44	1,088	7.57	0.398	3.40	1,020	7.25				
20	68	0.471	3.51	1,078	4.74	0.407	3.44	1,018	4.08				
40	104	0.487	3.63	1,058	2.50	0.415	3.49	1,015	2.20				
65	149	0.531	3.86	1,036	1.33	0.461	3. 71	1,010	1. 1 3				

SATURATI	SATURATION PROPERTIES OF MAXWELL™ PG AT 30% PROPYLENE GLYCOL CONCENTRATION BY VOLUME										
TEMPERATURE TH		THERM	. COND.	SPECIFIC HEAT		DENSITY		VISCOSITY			
ос	Œ	W/mK	Btu/hr ft² (° F/ ft)	kJ/kg K	Btu/lb°F	kg/m³	lb/ft³	mPa-s	cps		
10	50	0498	0.288	3.58	0.85	1,083	67.61	4.98	4.98		
20	68	0.507	0.293	3.64	0.87	1,074	67.05	3.84	3.84		
40	104	0.530	0.306	3.78	0.90	1,055	65.86	194	194		
65	149	0.561	0.324	3.97	0.95	1,027	64.11	105	105		

SATURATION PROPERTIES OF MAXWELL™ PG AT 40% PROPYLENE GLYCOL CONCENTRATION BY VOLUME										
TEMPERATURE 1		THERM	. COND.	OND. SPECIFIC HEAT		DENSITY		VISCOSITY		
ос	Œ	W/mK	Btu/hr ft² (° F/ ft)	kJ/kg K	Btu/lb°F	kg/m³	lb/ft³	mPa-s	cps	
10	50	0461	0.266	3.44	0.82	1,088	67.92	7.57	7.57	
20	68	0471	0.272	3.51	0.84	1,078	67.30	4.74	4.74	
40	104	0487	0.281	3.63	0.87	1,058	66.05	2.50	2.50	
65	149	0.531	0.307	3.86	0.92	1,036	64.67	133	133	

SATURAT	SATURATION PROPERTIES OF MAXWELL™ PG AT 50% PROPYLENE GLYCOL CONCENTRATION BY VOLUME										
TEMPERATURE THER		THERM	COND. SPECIFIC H		С НЕАТ	CHEAT DENSITY		VISCOSITY			
ос	Œ	W/mK	Btu/hr ft² (° F/ ft)	kJ/kg K	Btu/lb°F	kg/m³	lb/ft³	mPa-s	cps		
10	50	0410	0.237	3.23	077	1,090	6 8.0 4	1162	1162		
20	68	0423	0.244	3.31	0.79	1,082	67.55	8.01	8.01		
40	104	0445	0.257	346	0.83	1,062	66.30	347	347		
65	149	0480	0.277	3.66	0.87	1,042	65.05	170	170		

Our Total Lifecycle Care program is designed to support Maxwell'M customers throughout their system's lifecycle.

IN-SERVICE HEAT TRANSFER FLUID SAMPLE ANALYSIS

When Maxwell [™] is used and maintained as advised, it will provide years of trouble-free service. To help users get maximum life, we offer regular testing of our in-service heat transfer fluids.

TECHNICAL SERVICE

Our experienced technical service specialists can help answer your questions regarding heat transfer fluid selection, system start-up and operational issues.

For more information, visit our website:

OPERATIONAL TRAINING

We believe that by sharing our experience with customers, we can help improve system design, promote safety and reduce overall cost Customers can take advantage of our heat transfer system operation and product training programs.

SAFETY AWARENESS TRAINING

We consider safety a priority and offer our customers safety awareness training that focuses on installation, operation and maintenance of heat transfer fluid systems. Also, please refer to the Maxwell ™ Operating Guide.

INSTALLATION ASSISTANCE

We provide installation assistance by reviewing procedures and offering suggestions to reduce typical problems.

FLUSH FLUID AND FLUID REFILL We recommend cleaning your systems prior to installing Maxwell $^{^{\text{TM}}}$.

The state of the s

Although the information and recommendations set forth herein are presented in good faith, HT Materials Science Ltd. and its subsidiaries make no representations or warranties as to the completeness or accuracy thereof. You must make your own determination of its suitability and completeness for your own use, for the protection of the environment and for the health and safety of your employees and purchasers of your products. Nothing contained herein is to be construed as a recommendation to use any product, process, equipment, or formulation in conflict with any patent. and we make no representations or warranties, express or implied, that the use thereof will not infringe any patent. NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS AND NOTHING HEREIN WAIVES ANY OF THE SELLER'S CONDITIONS OF SALE.

Safety Data Sheets providing safety precautions that should be observed when handling and storing our products are available on-line or by request You should obtain and review available material safety information before handling our products. If any materials mentioned are not our products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be observed.

© HT Materials Science Ltd. Brands referenced herein are trademarks of HT Materials Science Ltd. or one of its subsidiaries. The''' symbol denotes registered trademark in the U.S.; marks may also be registered internationally. Any non-HT Materials Science Ltd. brands referenced herein are trademarks of their respective owners.